CHAPTER I OPERATIONAL PROCEDURES #### A. GENERAL Operational procedures take two steps, that of analysis and forecast aids, in the preparation sequence prior to issuing the warning. Within the Fleet Weather Central/Joint Typhoon Warning Center (FWC/JTWC), the basic analysis is the responsibility of the Fleet Weather Central (FWC). Microanalysis, forecast aid evaluation, and the warnings as described below, are the functions of the Joint Typhoon Warning Center (JTWC). ## B. ANALYSIS - FWC/JTWC - 1. Types of contour and/or streamline charts with standard times: - a. Surface, 0000Z, 0600Z, 1200Z and 1800Z. - b. Gradient level (2,000 to 3,000 ft above ground) 0000Z and 1200Z. - c. 850mb, 0000Z and 1200Z. - d. 700mb, 0000Z and 1200Z. - e. 500mb, 0000Z and 1200Z. - f. 300mb, 0000Z and 1200Z when required by JTWC. - g. 200mb, 0000Z and 1200Z. - h. 100mb, 0000Z and 1200Z when required. #### 2. Cross Sections: - a. Checkerboard or Stidd Diagram. - b. Time Cross Sections analyzed for θe . - c. Space Cross Section. ## 3. Micro-Analysis: - a. Sectional charts, hourly and 3 hourly, as required. - b. Reconnaissance reports. - 4. Single and Double Space Mean Charts at 500mb with the M-2 field. - 5. Easterly Wave Continuity Graph. #### C. FORECAST AIDS These are listed in alphabetical order so a priority of importance will not be established. ## 1. Climatology Once a tropical cyclone has been detected, the first step in preparing to issue the initial warning is to lay out a track based on climatology. This track is laid out on the top acetate of the work chart described below so as to extend it 4 or 5 days at the speed indicated by climatology. Next, the track is modified in accordance with the existing and forecast upper-air pattern, after which the initial warning is prepared and issued. The forecast track is extended and modified with time, as reconnaissance fixes are received and the synoptic upper-air pattern changes. The finest compilation of typhoon climatological data for the past 78 years is contained in the publication of the Royal Observatory Hong Kong, "Tropical Cyclones in the Western Pacific and China Sea Area." See 10 years of JTWC monthly best tracks in Chapter V. ## 2. Computer Products In 1962, the prognoses FU-AS, PH, CI and JP54 Series, product of NMC were used extensively. Long Wave positions and prognoses were received from FNWF. Zonal Index computations are still expected from FNWF and will be evaluated as a forecast aid during the 1963 season. FNWF and NMC provided the typhoon computer position forecasts in 1962, though irregularly received from the latter. Computer positions were considered for direction and/or speed of movement. #### 3. Coordination Coordination with other U. S. agencies is routine to obtain their considerations prior to issuance of a warning. When a circulation for which warnings are being issued is N of 25N, Fuchu Air Force Weather Central transmits coordination forecasts twice daily to JTWC. Coordination with other Air Force and Navy activities is on an "as required" basis, depending upon the location of a particular tropical cyclone. #### 4. Statistical Methods See Chapter V for research paper on the Miller-Moore and Arakawa 1962 evaluations. #### 5. Steering See Chapters III and IV. The space mean chart, as discussed herein, is a brief on how it is used at FWC/JTWC. The chart is constructed from the 500mb chart and has the single, double and the M-2 field thereon. During the Typhoon Season, the chart is produced as needed except that between July and November it is constructed twice daily. One great advantage of the chart is that it more nearly portrays that portion of the atmosphere under consideration on one chart than does any other analysis or system of presentation. The chart is useful for steering S of the ridge line under the following conditions: - a. When the typhoon is moving along the southern periphery of a large quasi-stationary anticyclone, the single space mean may act as a steering tool between 10N and the ridge line. - b. When the synoptic features are performing consistently, a prognostic chart can be constructed from the single space mean to be used as a steering tool from 10N to the ridge line. - c. The double space mean with the M-2 field is usually more reliable than the single space mean above 20N. The space mean will usually aid in forecasting the point of recurvature but should be used with caution. On large typhoons, this point may be a degree or two N of that indicated by the space mean chart. After a typhoon recurves, the chart is used to forecast its movement in a similar manner to that of forecasting the movement of extratropical systems. It is emphasized that the space mean chart is another tool, one of many, and usually cannot be successfully used as the sole device for making typhoon trajectory forecasts. The space mean chart is used in conjunction with the long wave patterns that are produced and provided by FNWF. They aid in determining the conditions of the major atmospheric features in the Northern Hemisphere and as a guide to the changes that may be expected. These patterns provide a substantial background upon which to base typhoon forecasts. ## 6. Surveillance Systems See Chapter II for evaluations of aerial reconnaissance, land radar, and satellites. ## 7. Wachholz Graph This is a graphical correlation of measured and observed eye meteorological parameters to maximum surface wind as collected by reconnaissance aircraft. JTWC plans to recompute and readjust the presentation of this graph during 1963. #### 8. Work Chart This is an operational and recording tool in preparing tropical cyclone warnings. The basic chart is from the Pacific Airways Plotting Chart series, plus 3 acetate overlays. All aircraft and radar fixes are plotted on the basic chart. Twenty-four hour forecast positions are plotted on the bottom overlay, warning positions are plotted on the second overlay, and the top overlay is utilized as a work sheet. Green, red, and black china marking pencils are used on the three acetates for instantaneous visual reference. #### D. WARNINGS Warnings are filed and transmitted every 6 hours at The second second synoptic times of 0000Z, 0600Z, 1200Z and 1800Z. In accordance with CINCPAC INST 3140.1D, the message contains the present warning position of the tropical cyclone being valid for the scheduled transmission time. This connotes that the 24 and 48-hour warning forecast positions are actually 30 and 54-hour forecasts from the last surface synoptic time. The warning position of a tropical cyclone is actually a short range forecast from the last "best" position. The last "best" position is usually about 2 hours old based on land radar, 2 to 3 hours old based on reconnaissance fixes, 3 to 6 hours old based on surface synoptic reports, or 6 to 12 hours old based on upper-air synoptic reports. It is for this reason that the 0600Z warning, for example, may not agree with the position of the tropical cyclone as indicated by the 0600Z analysis. Amendments are issued when this difference is significant. The numbers of tropical warnings run consecutively regardless of whether the cyclone is upgraded or downgraded from tropical depression, tropical storm or typhoon. If warnings are discontinued and the circulation regenerates, the new series of warnings are numbered consecutively from the number of the last warning of the previous series. As required, amendments and corrections are issued, and these are numbered the same as the warning which they amend or correct. The 1962 Verification Summary is contained in Chapter III. All 24 and 48-hour forecasts made when a tropical cyclone is of tropical storm or typhoon intensity are verified against the "best" tracks at all latitudes through the last warning issued. | / ITHE 2 | | | | ` | FWC | /JTW | c G | UAM | |----------|---|---|---|---|---|--|---|---| | DATE | KOROR | YAP | GUAM | TRUK | PONAPE | ENI-
WETOK | KWAJ. | MAJURO | | 08/2I00Z | 80 122
7 15 0+02
76 65 H | 5 % A2 | 15(0)-02 | 75 -02 | 774 055
1370 00-
76/A6
-010 - 5 | 84, 081
150+02/
77A2 No | 81 7 104
15 +01-
72 5 | | | 09/0000Z | 7 15 102
76 27 +1 | 852096
150109/ | 77 20 4 | 12() 058
77 6 | 150 +061
76 450 | 841.081
15 00- | 84 员107 | 1545 051 | | 09/0300Z | 9\85\r091
15\-11\
77\26 | 7850086
7850-70 | 15 -19\
76, 22
76, 22 | 75 7047 | 84 6 058
15(1)-031
74 18 + 4 | 86 ∑ 068 | 831-102
15€-05\
74-82 ° | 816 100
15()-05\ | | 09/0600Z | ₹ 862.071
150-20
7628
20 | 862 055
78 8
10 -1: | 057
057
057
057 | m 32. | 600-041 | 84 068
10 00- | 81 098
11)-(-0-1-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | 817 088
15 - 121 | | 09/0900Z | 82 × 075
15 + 01
75 At -1.2 | 84 2 054
15 0 -01
76 10 -1 | 887068
15 + 11v | 804027 | 15 +102 | 83 × 088
15 +20
75 43 | 8! 104
15 +061
74 42 2 | 81 7 090
15 +021
76 4 +-8 | | 09/1200Z | 86 089
15 +14/
3 24
11 -1-6 | 83 076 | 89-4074 | 81 037 | 7.5 081 | 772 088
100 00- | 79 - 110
15 + 66
73 62 + 8 | 79 7 098
15 +08/ | | 09/1500Z | 867. | 90 -074
15 -02
76 -03
76 -28 | 802/059
156-15\ | 75 × 032
8:0-051 | 74 ORi | 801 088
15 00-
76 27
10 12.8 | 73 4 - 08 | 82 6 102
15 +01/ | | 09/1800Z | 84 w 080 | 80 _ 062
15 - 12\ | 80,7042
100-17\
75.02 | 10. 020 | 74 4 070
4:0-111 | 80 4 085
15 -031
76 -37+21 | 77 6 098 | 81 104
150+02/
75-44 | | 09/2100Z | 82, 091
7 15 +11 ×
72 = 3
10 -3. | 79 v 055 | 150-01 | 18 025 | 76 4 085
5: +15V | 82 102
15 9+17 9 | 77 0 +16
77 0 +14 ×
73 0 | 10 +.4
82 = 115
15 +11/
73 = 2 | | 10/0000Z | 80 6 091
15 000-
75 100 -1. | 842 067
150 +124
78 70-20 | 100 051 7 | 79 ± 041
8: +16/
76 /As
76 /10 -1.7 | 83 5 088
159 +03/
75 6 +27 | 85, 105
15 +03/
78 20 124 | 782/115
15 () +03/ | 86 [109
150-06\ | | 10/0300Z | 83, 075
15 -16 \
70 -1.6 | 79 87 -3.1 | 150 -36
77 60 -44 | 85 4 037
15) (0-04/
79 3 -1.0 | 862 071 | 871 091
15 - 14 | 83./110
15.05\
74.60 +.8 | 84 105
15 (9-04) | | 10/0600Z | 86 4 051
15 4 24\
78 10 -2.0 | 95 2 030
79 26 -25\
79 26 -25 | 470 | 81 6 036 | 64 064
15 0 -07L
75 50 1-10 | 86 × 091 | 84/ 102
15-08\
74-2
10+4 | 83 098 | | 10/0900Z | 79 6 058
102 + 07/
75 10 -1.7 | 81 2033 | 76 6 999
37 -34
76 6 79 | 100+15
7586 | 77 6 085
10 +21/
74 6 +21 | 85 104
15 +131
77 5 +1-6 | 82) - 1000
15 - 021
74 - 4 | 93 085
10 -13\
74 -3
105 | | 10/1200Z | 80 H 071 | 78 A4
10 -2.1
92 -2 043
15 +10 /
78 A4
10 -3.3 | 77. 4 490
57 490
76 41-04
76 61-84 | 76 6 078
13 0 +17/
74 10 64.1 | 75 T 098
15 +13/
74 =2
20 +1.7 | 82 112
15 + 08
74 + 24 | 82_7698
150-027
75 | 82 u 3 083
15 0 - 02 v
73 62
10 -1.5 | | 10/1500Z | 80 6064
7 15 07\
76 55 07\ | 92 7 030
154 -13\
77 -22 4 4 | 80 2 961
86 - 29
74 - 63 | 77.6064
1570-14/
7543
7543 | 75 7 091
100 -071
74 63
27 20 +10 | 100 -171 | 81-7092
150-00
74 -1.0 | 91 - 1 085
10 0 +02 v
73 62 - 1.7 | | 10/1800Z | 826 044
150-20
76 55
10 -3.6 | 82 6 016
218 -14\
82 82
10-4-6 | 78 945
7€-16L
75 €10 97 | 76 6 054
12 -10\
73 0 8 +34 | 74 2 078
15 -13 \
74 10 \ + 8 | 78 5. 000- | 81 - 688
15 3 - 688
75 | 81_092,
150+67/
74-62 | | 10/2100Z | 76 051
15.00+07/
73.0012-1-0 | 78 6 008
15 -08L | 78 957
50 +12
77 -20 | 82, 071
150+17V
758 8+4.6 | 76 4 091
1.5 +13V | 79 6 105
15 +10
74 5 | 82 24 095
150+074
76 62 -17 | 84 090
150 -027
75 -027 | | 11/0000Z | 81 064
15-0+13/
75-05, -27 | 84 2016
150+081
78 48
78 51 | 78 962
50 +05/
77 0 1-89 | 862 078
15 +07/
76 6 5
76 6 5 | 77 105
50 +14/
74 6 47 | 796 108
15 036
74 & - 3 | 86 1 097
15 + 027
76 20 -1.8 | 85_ 043
15(3+03)
74 24
74 10 -1-6 | | II/0300Z | 174 € 064
30 00 00 00 00 00 00 00 00 00 00 00 00 0 | 78 2 015 | 78 970
69 +08/
76 6 2 -51
81 2 975 | 85, 067
15 -11 /
76 -15
76 -15 | 74 6 +1.7
82 7 088
15 -171
75 6 17
81 2 7 085 | 87 × 105 ±
15) (● -03\
75 △2 +14 | Dr100 1 | 0/ 094 | | II/0600Z | を 041
10 -231
73 日 -10 | 76-767-40
176-996
1170-19\
75-65-34 | 81 2975
109 +05/
74 200
74 200 | 84 (064
10() -03L
77 -03L | 812/085
15()-031
73 20
73 20 +21 | 86 W 1002
10 - 031
76 27
20 +1.1 | 15 + 03/
75 20 - 10
85 2 098
15 - 021
74 20 - 4 | 74 095
150-010
73 42
73 603 | | II/0900Z | 79 6047 | 74 a 015
7 5 0+191
73 % -1.8 | 78 999
30 +24/
77 60 2 00 | 78 6 081
10 0 081
74 10 0430 | 82 (100
15(1)+15/
74 (2) +1.5 | 100 104
74 20 00 | 841 695
15 -03√
74 20 -5 | 832-085
10@-10\
72-82-0-0 | | 11/1200Z | 75 4 069
75 +122/
74 23 - 2 | 76 ± 030
1-0+15/
75/64
10-1.3 | 78 / 032
5 0 +33/
774
10 +42 | 77 /108
8 +27/
75 41 | 762 108
15 + 084
75 20 +1.0 | 15 +08/
74 43 | 821 098
15 +03/
75 20 0.0 | 82 088
150+03
73 62
10 +5 | | 11/15002 | 70 4075 | 79 4 016
1000-141
75/20-14 | 77 ½ 032
5♥● ∞-
75% 471 | 77 # 097
77 - 111
75 - 134 | 80 -10\
74,31 +7 | 20 0-0
81 108
109 0-04\
74 20 +13 | 831100 1
15 402/
76 22
20 +8 | 82 - 092
10 0+04/
74 10 1-7 | | II/I800Z | 1 75 4 068 | 80 ± 997
15 €-19L
75 64
- 2 10 -19 | 78 u 035
80+03
77 6 +90 | 79 4095
158 -02L
76 10 +41 | 76 6 095
15-031
75 20 +1.7 | 82 m 105
10 0 -03\
76 € 1.0 | 81 102 e
10 + 02/
75 63 14 | 15 0+06/
73 22 + 6 | | 11/2100Z | . 75 065 | 802 015
15 +181
77 48
77 48 | 862-048
100+13/
7762
49.1 | 79 4 108
15 +13 ×
74 21
10 +3.7 | 81 105
1090+101
76 67 44 | 15 108
15 403/
76 403/ | 822 103
100+014
76 4 + 8 | B5 100 | | 12/0000Z | 81 669
15 +044
174 A2
174 A2 | 82 " 032
15 +17/
75 6 +1-4 | 86 075
 | 77 4 115 | 85 7 108
15 +034
75 23 +.3 | 852 110 8
15 +02 8
75 42 +2 | 83×106/6
100+03/6
76 =6 | 74 22
20 +10
87 - 103
15 0 +103
76 0 +1.0 | | 12/0300Z | 841-071
74-02/
74-01
74-01 | 84 033
15 +01/
10 +1-8 | 80 2 079
Mat-04/
76 10 7 + 10 9 | 15 v +07/
76 / 45 + 3.7
80 - 102
74 - 13 \ | 150-23 | 88.402 s
150-06
77-203 | 81 112
80 112 | 87, 104 | | 12/0600Z | 78 4 070
15011
16 +29 | 842 020
15 -13/
75/20
15 +24 | 77 H 078
10 -01/
74 6 410.3 | 74 60 +3.5
84 × 088
15 0-11\
76 63 +24 | 76 28 - 3
84 1 075
150-101
76 26 -1.0 | 862100
1500
76 20 - 2 | 76 10+1.2
824 113
100+101/
77 10 +1.5 | 74 35 +.8
847 110
156 -06
75 23 +1.5 | # CONTINUITY GRAPH